
Multimodal Autonomous Vehicle Trajectory Prediction

Andrew Plesniak 1 Chang Shi 2 Dai Li 2 Tiancheng Zhao 3 Zhaocheng Du 4

Abstract
Trajectory prediction is a hot topic in autonomous
driving and plays a key role in the success of
autonomous driving. During the exploration on
existing models, we found that temporal infor-
mation is essential for long-term prediction, and
better representation and better modeling of in-
teraction between agents and between agent and
environment can substantially improve the perfor-
mance. Therefore, we plan to fuse lidar data to get
better representation, explicitly model temporal
information of all agents, and model interactions
between agents and between agent and environ-
ment with the minimal computational cost.

1. Code Repository
https://github.com/ChangShiRaine/
Multimodal-Navigation

2. Introduction
Autonomous driving depends on the vehicle’s ability to pre-
dict the trajectories of multiple agents in a scene. Trajectory
prediction is the problem of predicting the spatial coordi-
nates of various agents that demonstrate various dynamic
behaviors. A well-designed model for trajectory prediction
should be able to predict the trajectories of multiple agents
in the scene, which are reasonable and consistent with the
scene semantics. The computational cost is also important
when considering real-time applications.

1Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
2The Robotics Institute, Carnegie Mellon University, Pittsburgh,
Pennsylvania, USA 3School of Architecture, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, USA 4Department of
Civil and Environmental Engineering, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, USA. Correspondence to:
Andrew Plesniak <aplesnia@andrew.cmu.edu>, Chang Shi
<changshi@andrew.cmu.edu>, Dai Li <dail@andrew.cmu.edu>,
Tiancheng Zhao <tianchen@andrew.cmu.edu>, Zhaocheng Du
<zhaoched@andrew.cmu.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Currently, most models focus on short-term prediction of
agent’s trajectory while paying few attention to long-term
prediction and they tend to only predict the target agent’s
trajectory instead of all agents’ trajectories in the scene.
Also, most models cannot handle complex situations, such
as crossroads and crowd road situation, well. Last but not
least, most models suffer from substantial computational
cost, especially when the number of agents in the scene is
large and thus can hardly be applied to real-time applica-
tions.

In this paper, we plan to fuse lidar data and map data with
methods, like bilinear pooling and corss-modality attention,
to get a better spatial representation and hope it can further
enhance performance. Also, we plan to explicitly model the
temporal information of all agents (instead of only the target
agent) with encoder-decoder structure, which is probably
transformer, as it allows parallelization for acceleration and
tend to achieve better results than LSTM. Last but not least,
we plan to enforces the predicted trajectory to lie within the
drivable area.

Currently, we implemented three baseline models, MTP,
CoverNet and Trajectron++, and hope to get a better un-
derstanding of failure cases. We find that our hypothesis
matches the experiment results and thus we will explore our
research ideas in the next phase of this project.

3. Related Work
Many traditional methods are based on the vehicle dynamic.
However, the limitation of these models are that they cannot
capture the complex interactions between the target vehicles
and environment/other agents. With outstanding perfor-
mance in many complex tasks, deep learning methods is
introduced into this work. Based on our research, the recent
works in the deep learning based trajectory prediction model
can be roughly divided into several groups.

3.1. Naive Method

We call this group of models ”naive” is because (1) they
didn’t explicitly model the interaction with additional tech-
nique with methods like GNN and attention mechanism and
(2) they didn’t encode the history trajectory with LSTM
based model. Most of them apply an end to end methods

https://github.com/ChangShiRaine/Multimodal-Navigation
https://github.com/ChangShiRaine/Multimodal-Navigation

Multimodal Autonomous Vehicle Trajectory Prediction

for trajectory prediction. For example, the MTP model (Cui
et al., 2019) encodes the multimodal information of the
scene in a rasterized image. Conditioned on the image and
the targets current state, MTP generates a fixed number of
trajectories (modes) and their related probabilities. The loss
function they use is a weighted sum of regression and clas-
sification. The MultiPath (Chai et al., 2019) and CoverNet
(Phan-Minh et al., 2020) model used the similar rasterized
image as the MTP. But unlike MTP, MultiPath uses fixed an-
chors obtained from the train set with unsupervised learning
to represent the modes, and outputs residuals with respect to
anchors in its regression heads. While CoverNet formulates
multimodal trajectory prediction purely as a classification
problem and predicts the likelihood of a fixed trajectory set.
With this setting, CoverNet is able to reduce the prediction
uncertainty. The source code for MTP and CoverNet can be
found in the NuScene development toolkits.

3.2. LSTM Based Method

The LSTM Based Method encodes the history trajectory
with LSTM encoder. MATF (Zhao et al., 2019) encodes
each agents past trajectories and the scene information with
LSTM and then uses convolution layers to identify inter-
agent dynamics. Then, LSTM are used again in order to de-
code into trajectories for each agent. Comparing to MATF’s
convolutions layers, MFP (Tang & Salakhutdinov, 2019)
also uses LSTM for encoding but adopts a dynamic attention
module to capture both the relationships between agents and
the scene context. It shows better capability for modeling
interaction comparing to CNN. At last, PRECOG (Rhine-
hart et al., 2019) is different from above two model. It is
a goal-conditioned factorized flow-based generative model
that uses likelihood inference to forecast the joint state of
all agents. It reasons probabilistically about plausible future
interactions between agents given observations of the envi-
ronment. Latent variables are used to capture the uncertainty
in other agents’ decisions and factorized latent variables can
model decoupled agent decisions even though agent dynam-
ics are coupled. The source code for above three models are
available.

3.3. Graph Based Method

The Graph Based Method models the interaction between
different agents or lane feature with GNN. The most re-
cent STOA model Trajectron++ (Salzmann et al.) uses a
graph-structured RNN to predict the agents interactions and
trajectories while considering agent motions and heteroge-
neous scene data. The LaneGCN (Liang et al., 2020) uses
GNN to learn lane graph representations and performs a
complete set of actor-map interactions. Comparing to the
rasterized map used in MTP (Cui et al., 2019), LaneGCN
constructs a lanegraph from vectorized map data and extract
map topology features. This representation can effectively

capture the complex topology and long range dependencies
of the lane graph as well as the complex actor-map interac-
tions. Graph-LSTMs method are also used(Chandra et al.,
2020). In this paper, a two-stream graph-LSTM network
is used with one stream predicts the spatial coordinates of
the future trajectories and another predicts agents’ behavior
and regularizes the first stream with Dynamic Geometric
Graphs (DGG). In addition to that, Spectral Cluster Regular-
ization is used to reduce the error of long-term predictions.
The source code of all three models mentioned above are
available.

3.4. Attention Based Method

The attention based method tries to directly link the agent’s
trajectory to the most relevant context in order to achieve
good performance. The DATF model (Park et al., 2020)
features a Cross-Agent Attention module featuring LSTMs
as well as a Agent-to-Scene Attention module built of of
CNNs. This paper has source code available. The MHA-
JAM model (Messaoud et al., 2020) uses a multi-head at-
tention layer to capture the potential interaction between
the target and context (Including the interaction map and
trajectories). The feature vector outputs by the multi-head
attention layer is used as the input for a LSTM decoder.
This paper has no open source code. The WIMP model
(Khandelwal et al., 2020) is a recurrent graph-based atten-
tion framework that adopts a road network attention module
and a dynamic interaction graph to capture interpretable
geometric and social relationships. It facilitates joint multi-
modal prediction of future states over an arbitrary number
of actors within a scene by leveraging information from
historical, social, and geometric sources. The source code
is available. The UST model (He et al., 2020) effectively
models the interlaced influence from both spatial and tem-
poral context by treating time and space dimensions equally
to model spatio-temporal context. It integrates 2D locations
and discrete time space into one unified 3D space, then
learn the spatio-temporal context end-to-end. Besides, it
can adapt the data by automatically partitioning the spatio-
temporal space. The source code is not available. Prob-
abilistic Multi-modal Trajectory Prediction with Lane
Attention for Autonomous Vehicles(Luo et al., 2020) is a
conventional LSTM encoder-decoder framework integrating
instance-aware lane representation and goal-oriented lane
attention module to generate diverse predictions of future
trajectories. The source code is not available. The TNT
model (Zhao et al., 2020) first predicts an agent’s potential
target states T steps into the future, by encoding its inter-
actions with the environment and the other agents. Then it
generates trajectory state sequences conditioned on targets.
Finally, it estimates trajectory likelihoods and selects a final
compact set of trajectory predictions. The source code is
not available.

https://github.com/kami93/CMU-DATF
https://github.com/wqi/WIMP

Multimodal Autonomous Vehicle Trajectory Prediction

4. Experimental Setup
4.1. Datasets

We are planning to use nuScenes as our dataset.

The NuScenes dataset is a large-scale dataset for au-
tonomous driving collected in Boston and Singapore. The
dataset includes camera images, Lidar sweeps, Radar
sweeps, object bounding boxes, map data and sensor data. It
comprises 1000 scenes, each of which is a 20 second record.
Each scene includes agent detection boxes and tracks hand-
annotated at 2 Hz, as well as high definition maps of the
scenes. As for dataset split, since the labels for test set are
not publicly available, we split the original train set into
train set and validation set and use the original validation
set as test set.

4.2. Modalities

We plan to use four modalities in NuScenes dataset: cam-
era images, Lidar, maps and history trajectories. We will
take episodes for 5 seconds long including 3 seconds of
history and 2 seconds of future. Figure 1 shows an example
visualization of data in Nuscenes.

Figure 1. Example visualization of camera images (top left), Lidar
(top right), map data (global view on bottom left, local view on
bottom right)

4.3. Evaluation Metrics

We will be using the following metrics to evalutate the
precision of our prediction.

• Average Displacement Error over k (MinADEk):
The average of pointwise L2 distances between the
predicted trajectory and ground truth over the k most

likely predictions.

• Minimum Final Displacement Error over k
(MinFDEk): The final displacement error (FDE) is
the L2 distance between the final points of the pre-
diction and ground truth. We take the minimum FDE
over the k most likely predictions and average over all
agents.

5. Problem statement
We formulate this problem as a multi-view problem and
view trajectory data, which contains temporal information,
as one modality and the map data and lidar data (will be
integrated later), which contains spatial information, as the
other modality. We denote the future states of the target
agent i (i.e. the vehicle whose trajectory we are predicting)
as Xi,

Xi =
{
xit, x

i
t+1, . . . , x

i
t+H

}N
i=1

Here xit denotes the states of target vehicle i at time t, H
denotes the prediction horizon. The history states of the
target agent i is denoted as Si, The groundtruth future trajec-
tory is denoted as Y. Then we can formulate the problem of
trajectory prediction as calculating the conditional distribu-
tion P(X̂|E, I , S) where E represents the environment (e.g.
maps info, traffic lights, traffic signs) and I represents the
interaction with surrounding agents (e.g. cars, pedestrians).
Our objective function becomes

maxθ
∑N
i=1ESi log pθ (Yi | E, I, S)

Where θ denotes network parameters.

6. Multimodal Baseline models
Describe mathematically 3 multimodal baseline model
for your research problem. Your mathematical descrip-
tion should include at least the loss function. Describe
in text how the model is optimized and how inference is
performed.(About 1 page)

6.1. MTP

MTP first rasterizes an agent-specific to encode the agent’s
map surrounding and neighboring agents, such as other ve-
hicles and pedestrians. Then, given i-th agent’s raster image
and state sij at time step tj , MTP uses a CNN model to
predict a multitude of M possible future state sequences
{[sim(j+1), · · ·, sim(j+H)]}m=1,···,M , as well as each se-
quence’s probability pim such that

∑
m pim = 1, where

m indicates mode index and H denotes the number of fu-
ture consecutive time steps (or prediction horizon). Without
the loss of generality, MTP infers agent’s future x, y posi-
tions instead of full states, while the remaining states can be

https://www.nuscenes.org/download

Multimodal Autonomous Vehicle Trajectory Prediction

derived by the future position estimates. Both past and fu-
ture positions at time tj are represented in the agent-centric
coordinate system derived from agent’s state at time tj .

MTP takes an agent-centric RGB raster image and agent’s
current state (velocity, acceleration, and heading change
rate) as input, and outputs M modes of future x, y positions
(2H outputs per mode) along with their probabilities (one
scalar per mode). This results in (2H + 1)M outputs per
agent. Probability outputs are passed through a softmax
layer to ensure they sum to 1.

MTP defines a single-mode loss L of the i-th agent’s m-
th mode at time tj as average displacement error (or l2-
norm) between the points of ground-truth trajectory yij and
predicted trajectory of the m-th mode ỹimj ,

L(yij , ỹimj) =
1

H

H∑
h=1

‖yhij − ỹhimj‖2

where yhij and ỹhimj are 2-D vectors representing x, y posi-
tions at horizon h of yij and ỹimj ,respectively.

In order to prevent multiple predicted trajectories from col-
lapsing into single trajectory, MTP first runs the forward
pass of the neural network to obtain M output trajectories.
Then it identifies modem∗ that is closest to the ground-truth
trajectory according to an arbitrary trajectory distance func-
tion dist(yij , ỹimj). Additionally, MTP forces the prob-
ability of mode m∗ to be as close as possible to 1 with
crossentropy loss. The final loss function can be written
as,

LMTP
ij = −

M∑
m=1

Im=m∗ log pim+α

M∑
m=1

Im=m∗L(yij , ỹimj)

where Ic is a binary indicator function equal to 1 if the
condition c is true and 0 otherwise.

6.2. CoverNet

Comparing to other methods, CoverNet simplifies the trajec-
tory prediction problem by instead frame it as classification
over a diverse set of trajectories. The author structured the
trajectory set to a) ensure a desired level of coverage of the
state space, and b) eliminate physically impossible trajec-
tories. To further optimize based on the fixed trajectory,
dynamically generating trajectory sets based on the agent’s
current state can further improve our method’s efficiency.
Since we did our experiments on fixed trajectory sets, we
will only briefly summarize how CoverNet works on the
fixed trajectory sets.

A trajectory set is considered to be fixed if the trajectories
that it contains do not change as a function of the agent’s cur-
rent dynamic state or environment. Intuitively, this makes

it easy to classify over since it allows for a fixed enumer-
ation over the set, but may result in many trajectories that
are poor matches for the current situation. Given a set of
representative trajectory data, the problem of finding the
smallest fixed approximating trajectory set K can be cast as
an instance of the NP-hard set cover problem. In CoverNet,
the author uses a coverage metric δ defined as the maximum
point-wise Euclidean distance between trajectories. The tra-
jectory set construction procedure starts with subsampling
a reasonably large set K′ of trajectories (Here specifically
size 20,000) from the training set. Selecting an acceptable
error tolerance ε, the author proceed to find the solution to:

argminK |K|
subject to K ⊆ K′

∀k ∈ K′,∃l ∈ K, δ(k, l) ≤ ε

where δ (st:t+H , ŝt:t+H) := maxt+Hy=t ‖sy − ŝy‖2 .

By employ a simple greedy approximation algorithm to
solve the problem above, the author cherry-pick the best
among candidate trajectories to place in a bag of trajectories
that will be used as the covering set, then repeatedly con-
sider as candidates those trajectories that have not yet been
covered and choose the one that covers the most uncovered
trajectories (ties are broken arbitrarily).

After generating the trajectory set, the simple classification
network using theconcatenation of convolutional result of
local scene raster input and the state inputs(speed, accela-
ration and yaw) as input is used to output the probability
over this set. For the classification losses, cross-entropy is
utilized with positive samples determined by the element
in the trajectory set closest to the actual ground truth in
minimum average of point-wise Euclidean distances.

6.3. Trajectron++

Trajectron++ is a graph-structured recurrent model that takes
into agent to agent interaction through its graph structure
as well as agent to environment interaction through its map
encoder. In order to create the graph, the scenes agents are
instantiated as nodes and directed edges are placed based
on agent proximity. The nodes contains the semantic agent
type (vehicle, pedestrian, bus, etc...) as well as the trajectory
sequences.

In its simplest form, Trajectron++ is a form of a Condi-
tional Variational Auto Encoder (CVAE). It uses a number
of encoders to end up with a latent vector that encodes all
of the scene information. These encoders include: node
history encoder which encodes the previous trajectory of
the agent, the edge encoder which encodes the edge fea-
tures of all the neighboring nodes of the same semantic type
and then performs attention across the different semantic
types, and the map encoder which encoders the semantic
map information. The node history encoder and the edge

Multimodal Autonomous Vehicle Trajectory Prediction

encoders are both LSTM based where as the map encoder is
a CNN. Optionally, there is a robotic future encoder which
encodes the future trajectory of the agent being analyzed,
which allows the model to condition on what the agent’s
intention which is often available in real-world system as
an output of a motion planning algorithm. Finally during
training, the future trajectories of all the other nodes are
also encoded and incorporate into the loss function to pro-
mote faster learning. The outputs of all these encoders are
concatenated and passed through a fully connected layer to
produce a latent vector encoding the scene.

On the decoding side, the latent vector is passed through a
fully connected layer and GRU decoder. The output is the
GRU are bi-variate Gaussian distributions parameters that
can be sampled from to get control instructions (accelera-
tion and steering rate) for the dynamics models defined for
each semantic class. For example, pedestrians are modeled
as single integrators and vehicles as dynamically-extended
unicycles. The advantage of this approach as opposed to
directly predicting the agents trajectory points is that the
distribution control output format allows for a distribution
of trajectories rather than a single one. In addition, the dy-
namic models ensure that the trajectories are dynamically
feasible by incorporating dynamic constraints and plausible
movement definitions.

The model is trained by maximizing an ELBO function
adapted from InfoVAE to account for the conditional formu-
lation.

7. Experiment methodology
The experiments of the three baselines are all done on the
Nuscenes dataset, while with a little difference on the train-
ing/testing split scheme. We all take 3s as the prediction
horizon.

For MTP, all the experiments are done on the whole
Nuscenes dataset, using the given splits from the bench-
mark(700 train, 150 val). As the original paper mentions
that predicting 3 different trajectories offers the best result
and adopting the angle between the current forward direc-
tion and the last point of the predicted trajectory as distance
metric performs better when changing directions (turn left or
turn right), we follow their recommendations. Additionally,
we adopt try predicting 2 different trajectories and predict-
ing 16 different trajectories. We use ADE@3s, FDE@3s as
the evaluation metric. We adopt ResNet-50 as the backbone

to extract features from the BEV raster images.

The CoverNet is trained and tested on the part 1 subset of the
Nuscenes dataset(85 train and 15 val), leading to a bit more
prediction error than the original paper results. Also, the
CoverNet implementation offers several choice of backbone,
ResNet-50 and MobileNet v2, while the original paper run
the experiments with ResNet-50, we run the experiments
with MobileNet v2. We take future horizon of 3s, batch
size of 16. And since CoverNet define the prediction as
a classification problem over a set of pre-computed trajec-
tories(modes) within the kinetics constraints. We tested
with 64, 415 and 2206 number of modes, but all over fixed
trajectory set coverage, since the authors didn’t release the
dynamic trajectory set. We use point-wise Euclidean dis-
tance as distance metric, and evaluated final results with
metrics minADE1, minADE5, minADE10 and FDE (FDE if
calculated over the one most probable trajectory).

For trajectron++, all the experiments are done on the whole
Nuscenes dataset, using the given splits from the bench-
mark(1000 scenes in total, 700 train, 150 val, and 150 test).
There is 1 base model and its 3 variations (Dynamics Integra-
tion, Dynamics Integration + Maps, Dynamics Integration
+ Maps + Robot Future). Since we don’t use Robot Future
information, we don’t include results of the last variation in
this report. We show FDE and ADE results.

8. Result and Discussion
8.1. Quantitative results

The experiment results of MTP is shown as 1. For MTP,
the more trajectories it predicts, the larger the error between
the closest trajectory and the ground truth. The experiment
results of CoverNet is shown as 2. As we can see that the
accuracy improves with using more fine-grained defined
trajectory set. The experiment results of Trajctron++ is
shown as 3. As we can see, afte adding dynamic integration,
maps and future information, the performance boosts.

The MTP performs better than the CoverNet, which is con-
trary to the original paper of CoverNet. One reason may be
that MTP is trained on the whole Nusecenes dataset, while
the CoverNet is trained on subset1 of the NuScenes dataset.
The other reason maybe that MTP uses ResNet-50 as back-
bone, while CoverNet uses MobileNet v2, which performs
worse in feature extraction from raster images than ResNet-
50 does. The Trajectron++ performs better than the MTP
and the CoverNet, which corresponds to the original paper.
The reasons include Trajectron++ considers and models
historical agents’ trajectories, it also explicitly models the
agent-to-agent interaction and the agent-to-environment in-
teraction, and it considers the spatial-temporal information
as well.

Multimodal Autonomous Vehicle Trajectory Prediction

After all, from the experiments, we find that the amount of
data used for training, the quality of the map representation,
the spatio-temporal information and the interaction between
agents and between agents and environment all play a key
role in trajectory prediction.

8.2. Error Analysis

After analyzing the predictions from MTP and CoverNet,
we find that they perform well on predicting stright tra-
jectories while performing badly on prediction trajectories
involve turns. Also, MTP and CoverNet performs well on
short-term predictions while performing badly on long-term
predictions. We think the reason is that these two models
don’t consider and model temporal information.

In order to further identify possible weaknesses, we qual-
itatively analyzed some of the Tracjectron++ predictions.
In the figures below, the white dashed line represents the
ground truth trajectories while the colored point cloud distri-
butions represent the predicted trajectory distributions.The
vehicle agents have vehicle icons and the remaining unla-
beled trajectories belong to pedestrians or other semantic
classes.

Figure 2. Trajectory example with many agents and complex map
information at an intersection.

Looking at some of the visualizations, we gained some inter-
esting insights. Surprisingly, there were some fairly simple
situations, such as driving along a straight two lane road
with minimal other agents, (see Figures 8 and 9) where
the model seemed to incorrectly predict curving trajecto-
ries. Whereas in Figure 7, a much more complicated traffic
scene with many agents at an intersection the model seemed
to perform well. We hypothesize this is due to the graph
structure of Trajectron++ that heavily models agent-to-agent
interactions. In scenes with few agents and simple semantic
information, this may adversely effect the predictions, even
though these scenes would seemingly be easier to navigate.

Figure 3. Trajectory example with only two agents on a two lane
road.

Figure 4. Another trajectory example with only two agents on a
two lane road.

Besides, there are some cases where the predicted direction
is correct but the predicted vehicle is faster than groundtruth
especially when passing crossroads. We argue that it’s be-
cause when human pass certain locations like crossroads,
they tend to slow down to keep safe. But the network fails
to learn this.

Drawing from these observations, it may be useful to in-

Multimodal Autonomous Vehicle Trajectory Prediction

Method Modes minADE1 @3.0s minFDE1 @3.0s
MTP, angle 2 1.6818 3.4305
MTP, angle 3 1.6945 3.4685
MTP, angle 16 1.9213 3.9049

Table 1. Experiment results of MTP on NuScenes dataset

Method Modes minADE1 minADE5 minADE10 FDE
CoverNet, fixed, ε = 8 64 20.2653 0.8979 0.8979 31.2407
CoverNet, fixed, ε = 4 415 7.4208 1.7699 1.4739 12.9996
CoverNet, fixed, ε = 2 2206 8.0844 6.0647 1.0399 13.2058

Table 2. Experiment results of Covernet (Phan-Minh et al., 2020) on NuScenes Part1 dataset

corporate more environmental information in the form of
additional modalities (such as images and Lidar) to bolster
situations with lacking map data. In addition, it may also
be useful to come up with a way to dynamically balance
the contributions of the agent-to-agent interactions vs the
agent-to-environment interactions. As a result, the model
would focus more of on the environmental information in
situations like Figure 8 and 9 where there are few agents.
This could possibly take the form of an attention module.

9. Research ideas
We will mainly focus on extension based on the work of
(Park et al., 2020) and (Salzmann et al.). Some of the
research ideas are listed below. We will compare our final
work with prior work from diverse facets: the precision of
the predicted trajectory (based on the metrics mentioned
in 4.3), performance on extreme corner cases and the
multimodal property of the model.

Based on the previous error analysis of current base-
lines, we conclude that more environmental information
are needed and better ways of modeling the interactions
between the environment-agent and agent-agent.

(1) Merge more information in the map representations. In
the experiments of trajectron++, we notice that merg-
ing more information will improve the performance
(Dynamic Integration + maps outperforms baseline and
Dynamic Integration only). Adding the map informa-
tion reduces the probability of knocking into the wall
and across lane boundaries. So we plan to merge more
information in the map representations instead of just
using drivable map masks. For example, as shown
in 5, we can represent the lane into a lane graph and
use a graph convolutional network to encode the lane
information and then concatenate it to map features.

(2) Bilinear fusion of images and LiDAR. As what is men-

Figure 5. Proposed idea 1

tioned previously, we found that the model fails to
learn to slow down at crossings and tend to rely heavily
on agent-agent interactions. To alleviate this problem,
we decide to use camera images and LiDAR modali-
ties since camera images can offer us information like
traffic lights, traffic signs and car turning lights while
LiDAR can provide more acccurate depth information.
In our design as shown in 6, LiDAR and image features
are extracted seperately using CNN and fused together
by bilinear fusion.

Figure 6. Proposed idea 2

(3) Cross-modality attention. To better align multi-modal
modality feature representations and learn to balance
agent-environment and agent-agent interactions, we
propose to use cross-modality attention. The design is
shown in 7

(4) Spatial-temporal attention. Since both MTP and Cover-
Net don’t model spatial information as well as tempo-
ral information, they perform worse than Trajectron++.
Thus, we believe spatial information and temporal in-

Multimodal Autonomous Vehicle Trajectory Prediction

Trajectron++ variants FDE @3.0s ADE @3.0s
Base 1.25 0.56
+ Dynamic Integration 1.09 0.44
+ Dynamic Integration, Maps 0.81 0.45

Table 3. Experiment results of Trajectron++ (Salzmann et al.) on NuScenes dataset

Figure 7. Proposed idea 3

formation play a key role in trajectory prediction. How-
ever, Trajectron++ suffers from high computational
cost and multi-stage processing. Therefore, we pro-
pose to try spatio-temporal attention to reduce compu-
tational cost and facilitate end-to-end processing. We
think this will further improve performance.

(5) Though a continuous predictive distribution of ectory
predictions relying on the ground truth, while (Park
et al., 2020) proposed a notation-free approach to esti-
mate the true trajectory distribution based on a drivable-
area map. However, it assumes that every drivable
location is equally probable for future trajectories to
appear in, which is not the real case since human
drivers tend not to drive on the edge of the road. Thus
we can merge the ground truth trajectory with the
drivable-area map to get a probabilistic drivable-
area map which may better help the trajectory predic-
tion.

(6) The prediction result from most recent models are usu-
ally a probabilistic map over all possible trajectories,
as shown in 8, neglecting the possible intention of the
agents. Apparently, the trajectory would be different
when the agent tends to go straight comparing to when
the agent tends to turn left. Thus, if we can predict
which class the intention of the agent falls into, and
only forecast the trajectory distribution under that
intention, the forecasting accuracy may have an im-

provement. Possible methods include an embedded
intention module with an end-to-end training style as
(Zhao et al., 2020) suggested.

Figure 8. Example of trajectory prediction from (Park et al., 2020)

References
Chai, Y., Sapp, B., Bansal, M., and Anguelov, D. Multipath:

Multiple probabilistic anchor trajectory hypotheses for
behavior prediction. In CoRL, 2019.

Chandra, R., Guan, T., Panuganti, S., Mittal, T., Bhat-
tacharya, U., Bera, A., and Manocha, D. Forecasting
trajectory and behavior of road-agents using spectral clus-
tering in graph-lstms. IEEE Robotics and Automation
Letters, 5(3):4882–4890, 2020.

Cui, H., Radosavljevic, V., Chou, F.-C., Lin, T.-H., Nguyen,
T., Huang, T.-K., Schneider, J., and Djuric, N. Mul-
timodal trajectory predictions for autonomous driving
using deep convolutional networks. In 2019 Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 2090–2096. IEEE, 2019.

He, H., Dai, H., and Wang, N. Ust: Unifying spatio-
temporal context for trajectory prediction in autonomous
driving, 2020.

Khandelwal, S., Qi, W., Singh, J., Hartnett, A., and Ra-
manan, D. What-if motion prediction for autonomous
driving, 2020.

Multimodal Autonomous Vehicle Trajectory Prediction

Liang, M., Yang, B., Hu, R., Chen, Y., Liao, R., Feng, S.,
and Urtasun, R. Learning lane graph representations for
motion forecasting, 2020.

Luo, C., Sun, L., Dabiri, D., and Yuille, A. Probabilistic
multi-modal trajectory prediction with lane attention for
autonomous vehicles, 2020.

Messaoud, K., Deo, N., Trivedi, M., and Nashashibi, F.
Trajectory prediction for autonomous driving based on
multi-head attention with joint agent-map representation.
2020.

Park, S. H., Lee, G., Bhat, M., Seo, J., Kang, M., Francis, J.,
Jadhav, A. R., Liang, P. P., and Morency, L.-P. Diverse
and admissible trajectory forecasting through multimodal
context understanding. arXiv preprint arXiv:2003.03212,
2020.

Phan-Minh, T., Grigore, E. C., Boulton, F. A., Beijbom,
O., and Wolff, E. M. Covernet: Multimodal behavior
prediction using trajectory sets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14074–14083, 2020.

Rhinehart, N., McAllister, R., Kitani, K. M., and Levine,
S. PRECOG: prediction conditioned on goals in visual
multi-agent settings. CoRR, abs/1905.01296, 2019. URL
http://arxiv.org/abs/1905.01296.

Salzmann, T., Ivanovic, B., Chakravarty, P., and Pavone, M.
Trajectron++: Multi-agent generative trajectory forecast-
ing with heterogeneous data for control. arXiv preprint
arXiv:2001.03093.

Tang, Y. C. and Salakhutdinov, R. Multiple futures predic-
tion, 2019.

Zhao, H., Gao, J., Lan, T., Sun, C., Sapp, B., Varadarajan,
B., Shen, Y., Shen, Y., Chai, Y., Schmid, C., Li, C., and
Anguelov, D. Tnt: Target-driven trajectory prediction,
2020.

Zhao, T., Xu, Y., Monfort, M., Choi, W., Baker, C., Zhao,
Y., Wang, Y., and Wu, Y. N. Multi-agent tensor fusion
for contextual trajectory prediction. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 12126–12134, 2019.

http://arxiv.org/abs/1905.01296

