
Time-Varying DAGs with NOTEARS

Maxwell Bond Wang (mbwang) 1 Chang Shi (changshi) 1 Wuwei Lin (wuweil) 1 Michael Kronovet (mkronove) 1

Introduction
Many processes in the natural sciences, particularly within
biological and medical applications, can be represented as
dynamical networks. For example, the gene expression
of cells undergoes a large amount of transformation that
can be linked to processes such as the development of pro-
genitor stem cells or the transformation of healthy tissue
into cancerous tumors. Due to this, there has been con-
siderable interest in investigating the dynamics of single-
cell gene expression with the hopes of identifying diagnos-
tic biomarkers or therapeutic targets, especially consider-
ing the advent of genome-editing technologies (Lin & Bar-
Joseph, 2019). However, linking the changes of a single
cell to other important dynamic processes occurring in sur-
rounding cells/tissues is a non-trivial task. Cell develop-
ment is oftentimes not synchronized within a single sample
or tissue, introducing the need for flexibility in measuring
temporal correlations. Furthermore, in single-cell data it is
often unclear how cells have differentiated and difficult to
follow the response of specific cell types over time.

In order to solve these issues, time-based inference meth-
ods using graphical models that seek to account for the bi-
ological similarities among certain cells in addition their
temporal dependencies have been introduced (Lin & Bar-
Joseph, 2019). A Dynamic Bayesian Network (DBN) is
a specific type of graphical model that is able to model
temporal dependencies as well as spacial dependencies be-
tween variables. Like all graphical models it is useful for
determining relations between variables in a system, and
therefore we believe it will be a good fit for modeling the
time-series single-cell gene expression data.

The goal of this project is to optimize the Non-
combinatorial Optimization via Trace Exponential
and Augmented lagRangian for Structure learning
(NOTEARS) framework (Zheng et al., 2018) for learning
time-varying DAGs. The NOTEARS framework is a
score-based continuous optimization algorithm for DAGs,
which formulates structure learning as a least-squares min-
imization problem. This convenient formulation allows

1Carnegie Mellon University, Pittsburgh, PA 15213, USA.

10708 Class Project, Spring, 2019.
Copyright 2019 by the author(s).

us to easily add regularizers to the objective function.
DYNOTEARS (Pamfil et al., 2020) is an adaptation of
NOTEARS used to learn dynamic graph structures from
time-series data. In contrast to this method, we attempt to
modify the NOTEARS framework by learning independent
graphs across time and then aggregating them together.
We apply several different methods that rely on unique
assumptions about the relationships of variables over time
and multiple graph aggregation techniques. We apply our
methods to time series data where the ground truth is static
across time as well as time series data where the ground
truth graph is dynamic over time.

We summarize our contributions as followed:

1. We adapt the NOTEARS for the estimation of the
graphical models using time-varying data.

2. We introduce a theoretical modification to the existing
DYNOTEARS framework to impose regularization on
graph nodes that are close together in the time series.

3. We compare several graph aggregation techniques to
combine independent time series graphs into a static
ground truth graph.

4. We explore different time regularization techniques
for combining independent, static graphs into dy-
namic graphs.

Related Work
Structure learning for DAG

The two common types of algorithms used to find the
structure of DAGs are score-based methods and constraint-
based methods. Constraint-based methods are sensitive
to noise and suffer from error propagation whereas score-
based methods are computationally intensive.

Zheng et al. (2018) formulates the structural learning prob-
lem for DAG as an optimization problem for a continuous
function, which can be solved with existing optimization
methods. Zheng et al. (2019) extends the algebraic char-
acterization in NOTEARS to nonparametric SEM by lever-
aging nonparametric sparsity based on partial derivatives.
One of the drawback of NOTEARS is that it uses ma-
trix exponential to characterize the DAG, which requires

Time-Varying DAGs with NOTEARS

O(d3) computational complexity. Lee et al. (2020) intro-
duces spectral radius as an alternative characterization for
DAG, which can be approximated in O(d2) time. It also
introduced a gradient-based optimization method to make
NOTEARS scalable to handle gene regulatory data.

Learning time-varying networks

There are two key technical hurdles preventing us from
an in-depth investigation of the underlying mechanisms of
time-varying networks, the lack of measurements and the
unavailability of serial snapshots of the time-varying net-
works. Kalofolias et al. (2017) indicates that depending on
the speed with which the hidden structure changes, there
might be only very few sample available that correspond to
the same or almost the same distribution at a given point in
time. Usually, only time series measurements, but not their
linkage status are available.

To increase the resolvability, most models for learning
time-varying networks are based on some assumptions. A
particular emphasis is put on sparsistent estimation, that is,
consistent estimation of the graph structure, under a set-
ting in which the number of nodes p in the graph is larger
than the sample size n, but the number of neighbors of each
node is small, that is, the true graph is sparse. described in
Kolar et al. (2008).

Koller & Friedman (2009) summarizes the general estima-
tion framework for time-varying networks as, given data

Dn = {xt|xt ∼ P (θt;Gt)}t∈Tn , Tn = {1/n, 2/n, . . . , 1}

arg max `(Dn, {θt})− ({θt})

While the loss `(Dn, {θt}) measures the fit of model to
data, the penalty ({θt}) balances the complexity of model
and encodes structural assumptions about model class. Ac-
cording to the property of networks, smoothly evolving net-
works and networks with jumps can be learned by given
different penalty, such as penalty on parameter changes,
or structure changes. The score-based general framework
gives strong convenience to our works on learning time-
varying DAGs, since it is straight forward to adjust the
penalty tern according to our demand of how to learn from
time-series data.

Comparing to time invariant networks, much less has been
done on modeling dynamical processes that guide topo-
logical rewiring and semantic evolution of networks over
time. Hanneke & Xing (2007) introduced a new class
of models to capture dynamics of networks evolving over
discrete time steps, called temporal Exponential Random
Graph Models (tERGMs). This class of models uses a
number of statistics defined on time-adjacent graphs, for
example, ”edge-stability”, “reciprocity”, ”density”, ”tran-
sitivity”, etc., to construct a log-linear graph transition

model that captures dynamics of topological changes. Guo
et al. (2007) incorporate a hidden Markov process into the
tERGMs, which imposes stochastic constraints on topolog-
ical changes in graphs. Unfortunately, even though this
class of model is very expressive, the sampling algorithm
for posterior inference scales only to small graphs with
tens of nodes. Later, Zhou et al. (2008) develops a non-
parametric method for estimation of a time-varying Gaus-
sian graphical model, while Kolar et al. (2008) discussed
about a counterpart of the discrete Ising model. Both of
them successfully build methods on a temporally smoothed
l1-regularized logistic regression formalism that can be
cast as a standard convex-optimization problem and solved
efficiently using generic solvers scalable to large networks.

While the aforementioned works are on undirected net-
works. DBNs are the standard approach to model-
ing discrete-time temporal dynamics in directed graphical
models. In econometrics, they are also known as structural
vector autoregressive (SVAR) models. There are many
methods for learning DBNs in the literature. Some ap-
proaches ignore contemporaneous dependencies and re-
cover only time-lagged relationships. Others learn both
types of relationships independently. Many methods follow
a two-step approach of first learning inter-slice weights and
then estimating intra-slice weights from the residuals from
the first step. There are also hybrid algorithms that com-
bine conditional-independence tests and a local search to
improve the BIC score. While all of these methods suf-
fer from the curse of dimensionality, (Pamfil et al., 2020)
largely reduces the computation complexity by applying
smooth equality constraint.

In 2009, Synapse.org organized the DREAM4 (Dialogue
for Reverse Engineering Assessments and Methods 4)
competition in which participants were challenged to infer
the structure of gene regulatory networks given simulated
data. Pirgazi & Khanteymoori (2018) discusses and evalu-
ates the best performing methods used in this challenge as
well as subsequent methods that were invented years later.
The best performing method on the DREAM4 challenge
when it was still active was the GENIE3 algorithm. This
algorithm partitioned the task of learning a gene regulatory
network between p genes into p different regression prob-
lems, where in each regression the expression pattern of
one of the genes was predicted from the expression patterns
of all the other genes using tree-based ensemble methods.
In addition to the GENIE3 algorithm, Pirgazi & Khantey-
moori (2018) evaluates the BMALR algorithm, which is
a commonly used method for inferring molecular interac-
tions in biological systems. BMALR algorithm computes
posterior probabilities of the edges from gene regulators to
a target gene within a hybrid framework of Bayesian model
averaging and linear regression methods.

Time-Varying DAGs with NOTEARS

We plan to use the results obtained by Pirgazi & Khantey-
moori (2018) when testing these state of the art algorithms
as a reference to compare them to our implementation of
NOTEARS on the DREAM4 challenge dataset.

Methods
Proposing Time-Based Regularization on
DYNOTEARS

DYNOTEARS identifies a dynamical Bayesian network
as follows. Consider M realizations of a dynamical
random variable with the m-th time series given by
{xm,t}t∈{0,...,T}. Each xm,t ∈ Rd is a d-dimensional
random variable. Each time-step of this random vari-
able, xm,t, is affected by the P most recent time-steps:
xm,t−1, . . . xm,t−P . There are also relations between the
d different features of xm,t within the same time point. We
can formulate all of this as,

xTm,t = xTm,tW+xTm,t−1A1+· · ·+xTm,t−PAP +zTm,t (1)

zTm,t is merely a noise term. W represents the interactions
in x within the same time point and A1, . . . , AP repre-
sents interactions across different time points. The goal of
DYNOTEARS is to identify optimal W and As to best-fit
this model. More specifically, it tries to optimize the fol-
lowing loss function where X is a matrix containing all the
xm,t and Y is a matrix containing their time-lagged ver-
sions.

min
W,A

l(W,A) = min
W,A

1

2n
||X −XW − Y A||2F (2)

Here we have concatenated all A1, . . . , AP into a single
large matrix for simplicity of notation. In DYNOTEARS,
there is also an l1 penalty on W and A to enforce sparsity.

For this project, we want to allow W and/or A to vary with
time to add an additional degree of flexibility in capturing
non-stationary signals. Somewhat naively, we can simply
allow W and A to be assigned a different value for each
time slice, t, as follows,

l(W,A) ∝
M∑
m=1

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣xTm,t − xTm,tWt . . .

+

P∑
p=1

xTm,t−pAt,p

∣∣∣∣∣
∣∣∣∣∣
2

(3)

Then we can apply some form of regularization to assure
thatW andA are not changed too quickly. Assuming some
distance measure, d(Wt,Wt+1), to compare how different
two networks are from each other, this can take the form

of,

min
W,A

f(W,A) = min
W,A

[
l(W,A) + λ

T−1∑
t=1

(
d(Wt,Wt+1)+ . . .

+

P∑
p=1

d(At,p, At+1,p)

)]
(4)

If λ → ∞, this becomes the same as the original
DYNOTEARS proposal.

The simplest distance measure would be to simply subtract
the two matrices and perform a Froebius norm. This has
the advantage of having a simple optimization path. Other
options include distance measures from the graph kernel
literature. One example here would be random walk ker-
nels, which perform random walks on two graphs simulta-
neously and counts the number of paths that were produced
by both walks. Intuitively, there should also be an interest-
ing way to frame this specifically in the context of DAGs.

However, all of this will only work if every trial is tem-
porally aligned with each other. Let’s say we are looking
at how the top five stocks of some index changes between
2007 and 2011 to model the 2008 housing market crash.
Each trial comes from a different index: housing, insur-
ance, energy, etc. For each index, it would make sense for
theA’s to start encouraging positive overall trends, but then
switch to negative ones as the crash occurs before switching
back to positive when recovery happens. However, indices
involving housing started collapsing before other markers.
Why should we force the timing of whenW andA changes
to be exactly the same for different trials? Let’s try adding
in a temporal offset instead,

l(W,A) ∝
M∑
m=1

T∑
t=1

∣∣∣∣∣
∣∣∣∣∣xTm,t − xTm,tWt+τm . . .

+

P∑
p=1

xTm,t−pAt+τm,p

∣∣∣∣∣
∣∣∣∣∣
2

(5)

Basically every single trial goes through the “same” evolu-
tion of its DBN, but the exact timing of “when” this evo-
lution happens can be phase lagged. We can also apply
regularizers to limit the magnitude of this phase lag subject
to some application-specific intuition.

Unfortunately, we are unable to directly test out this
modification for the sake of this project, because the
DYNOTEARS source code has not been made publicly
available. Therefore, for the rest of this paper we impose
modifications on the NOTEARS framework to aggregate
graphs that were computed independently across time se-
ries data.

Time-Varying DAGs with NOTEARS

Evaluation

We evaluate the efficacy of our predicted graphs us-
ing precision-recall and receiver operating characteristic
curves. A precision-recall curve plots fraction of retrieved
instances that are relevant versus the fraction of relevant
instances that are retrieved. A receiver operating charac-
teristic curve plots the true positive rate versus the false
positive rate. These curves are standard for measuring how
accurate edge predictions in a graph are compared to the
ground truth.

In the DREAM4 challenge, contestants were evaluated on
derivatives of the precision-recall and receiver operating
characteristic curves. Specifically, the DREAM4 challenge
organizers proposed the following evaluation framework:

We begin with the following definitions.

• AUPR as the area under the PR curve

• AUROC as the area under the ROC curve

• paupr is the probability that a given or larger AUPR is
obtained by random ordering of the potential network
edges.

• pauroc is the probability that a given or larger AUROC
is obtained by random ordering of the potential net-
work edges.

p̄aupr and p̄auroc are the respective geometric means of the
individual AUPR and AUROC p-values from the 5 different
networks in the dataset.

p̄aupr = 5

√
p1aupr · p2aupr · p3aupr · p4aupr · p5aupr (6)

p̄auroc =
5
√
p1auroc · p2auroc · p3auroc · p4auroc · p5auroc (7)

The overall score is the log-transformed geometric mean of
p̄aupr and p̄auroc.

score = −1

2
log10(p̄aupr · p̄auroc) (8)

We use these same methods when applying NOTEARS to
the DREAM4 dataset to accurately compare our predic-
tions to the best methods from this challenge. We calcu-
late the AUPR and AUROC p-values by simulating 10,000
different 100x100 graphs, where each entry in the graph is
drawn from a Uniform(0,1) distribution. The proportion of
these random graphs with higher AUPR and AUROC val-
ues, yields the AUPR and AUROC p-values, respectively.
We expect that random graphs would have AUPR and AU-
ROC values of around 0.5, so if our methods are to perform
well (have low p-values and high scores), they would need
to have AUPR and AUROC values considerably above 0.5.

Data

We first evaluated the performance of our algorithm on
simulated data generated with GeneNetWeaver (GNW)
(Schaffter et al., 2011). GNW is a open source frame-
work for the generation of detailed dynamical models of
gene regulatory networks to be used as benchmarks, it also
provides a network motif analysis that reveals systematic
prediction errors, thereby indicating potential ways of im-
proving inference methods. Specifically, we have setup the
data of EColi gene network in the GNW dataset and bench-
marked the existing methods Zheng et al. (2019); Lee et al.
(2020).

The goal of the DREAM4 in silico network challenge was
to reverse engineer gene regulation networks given in sil-
ico gene expression datasets. The data from the DREAM4
challenge was generated using the GNW version 2.0 (Mar-
bach et al., 2010). The challenge was made up of 3 subchal-
lenges called In Silico Size 10, In Silico Size 100, and In Sil-
ico Size 100 Multifactorial. In each of these subchallenges,
contestants were evaluated on five different networks. Net-
work topologies were obtained by extracting subnetworks
from transcriptional regulatory networks of E. coli and S.
cerevisiae. We evaluated our methods on the In Silico
Size 100 subchallenge data, and we compared our meth-
ods to the approaches that Pirgazi & Khanteymoori (2018)
examined on this same dataset. The data corresponds to
noisy measurements of messenger RNA concentration lev-
els, which were normalized such that the maximum nor-
malized gene expression value in the datasets of a given
network is one. In the In Silico Size 100 data, there are 100
messenger RNA features in this dataset for every datapoint.
The dataset consists of 5 ground truth graphs, where each
graph has 10 data samples. Each data sample has 21 time
points with times from 0 to 1000 in increments of 50.

We also use the SynTReN (Synthetic Transcriptional
Reulatory Networks) to synthesize expression data of 100
and 300 genes. The sample size of each simulation are 500
or 2000. Two genes, Ecoli and YeastFull are used to gener-
ate the dataset.

Our Approaches On the DREAM4 Dataset

Method 1 We treat each time point as another sample from
the same data, ignoring the actual time that the datapoint
was collected. This allows NOTEARS to compute a single
graph from the 210 total data points (10 data samples with
21 time points each). This method ignored temporal rela-
tionships in the data and is used as a simple baseline for
NOTEARS.

Method 2 We organized the data by the time variable, and
then a separate graph was computed for each of the differ-
ent time groupings. This left us with 21 separate graphs

Time-Varying DAGs with NOTEARS

that we averaged together by taking the arithmetic mean of
Wt to create the gene regulatory network prediction.

Method 3 Given a time t, we took data from t and
t + 1 and constructed separate features that corresponded
to each time point. For example, if our graph originally
had features v1, v2, v3 our new graph would have fea-
tures v1t, v2t, v3t and v1t+1, v2t+1, v3t+1. We join the
data from each sample across the different time points so
that we encode data points from t and t + 1 into a single
data point. Our idea with this approach was to encode some
time dependencies between the samples using a Markov
structure where features can be influenced only by the fea-
tures that were at the same time or directly before them.
For each time step t, the prediction for the time step is a
matrix Wt ∈ R2p×2p, which contains the estimated graph
for the current time step, as well as the connection to the
previous time step. Denote Wt as block matrix:

Wt =

(
wt,t wt,t+1

wt+1,t wt+1,t+1

)
(9)

where wt,t, wt,t+1, wt+1,t, wt+1,t+1 ∈ Rp×p. Here
wt,t+1, wt+1,t is the connection between two adjacent time
t and t+ 1.

After getting these T −1 (20) graphs that had 2p (200) fea-
tures each, we averaged them into a single 100x100 graph.

For averaging the results over time to produce a single
100x100 graph as the final prediction, two approaches are
applied. The first approach is similar to the way we com-
pute the average in Method 2, in this approach we only
take wt+1,t+1 of each Wt and compute the average, ignor-
ing other parts in Wt. This approach has the assumption
that NOTEARS can take the time dependency into account
by using both the feature for time t and t+ 1 as the input.

Although experiment results show that this simple ap-
proach works well, it ignores the other parts of each Wt

and thus fails to consider the estimated connection between
time t and t+ 1.

Method 4 This was the same method that we used in
method 3 except we use an alternative, ”smoothing”, ap-
proach for the graph agglomeration, which considers the
estimated connection between time t and t+ 1 in the graph
estimation. In this approach, we perform local smoothing
first to produce the smoothed graph for each time t, and
then compute the average over them. The local smooth-
ing is performed as followed: for each prediction Wt, we
compute the smoothed prediction for the graph t+ 1 as

W ′t+1 = wt+1,t+1 +
1

2
(wt,twt,t+1 + wt+1,twt,t) (10)

And then, we compute the average of W ′t+1 to produce the
final prediction.

Method 5 We applied NOTEARS T − 1 (20) times, where
for each t ∈ [T − 1] we used all the data points from t and
t + 1 to fit our NOTEARS graph while retaining the same
number of original features (so we use 20 datapoints for
each graph instead of 10 like in the other methods). This
method relied on a similar Markov assumption to methods
3 and 4 where the graph at t + 1 only depends on the fea-
tures at the same time and the graph at t. However, this
method encodes the Markov assumption in the number of
datapoints since we fit each graph on double the number of
data points instead of double the number of features.

Preliminary Results

Dataset AP (%) ROC (%)
GNW-Ecoli 35.7 93.0

GNW-YeastFull 56.9 88.9
EColi-d100-n500 8.5 73.3
EColi-d100-n2000 9.3 74.3
EColi-d300-n500 10.5 83.6
EColi-d300-n2000 12.6 85.4

YeastFull-d100-n500 14.1 83.2
YeastFull-d100-n2000 14.6 85.8
YeastFull-d300-n500 11.6 88.5

YeastFull-d300-n2000 12.9 89.6

Table 1. Benchmark of NOTEARS as baseline on GNW and Syn-
TRen datasets. Average precision (AP) and area under a ROC
curve (AUC-ROC) are reported.

We have run NOTEARS on the gene regulatory network
dataset GNW and SynTReN as the baseline. As shown
in Table 1, GNW-Ecoli and GNW-YeastFull are from the
GNW dataset. The other datasets in Table 1 are synthe-
sized expression data from the SynTReN. The name of the
synthesized dataset follows the convension gene name −
dxxx− nyyy where xxx and yyy are the number of edges
and the number of nodes, respectively. We will benchmark
our method on these datasets in the next step.

Results and Discussion on DREAM4 Dataset
Prior Results

Pirgazi & Khanteymoori (2018) reports the AUPR and
AUROC p-values determined for each network in the
DREAM4 In Silico Size 100 dataset using 14 different state
of the art network learning methods. In table 2, we show
the total scores for each of these methods which we com-
pare to our own approaches.

Time-Varying DAGs with NOTEARS

Model Total Score
BMALAR 1.60e2

GINIE3 1.51e2
MRNET 1.06e2

ARACNE 1.31e2
BGRMI 1.50e2

CLR 1.49e2
G1DBN 1.02e2

NARROMI 1.39e2
TIGRESS 1.53e2
GENIRF 1.64e2
MIBNI 1.44e2
FBISC 1.35e2

CMI2NI 6.52e1
KFLR 2.03e2

Table 2. Total scores evaluated on the DREAM4 dataset from
Pirgazi & Khanteymoori (2018).

AUPR P Values on DREAM4

Method 1 Method 2 Method 3 Method 4 Method 5
Graph 1 0.4980 0.5012 0.5012 0.5012 0.5046
Graph 2 0.5021 0.5021 0.5139 0.3646 0.5031
Graph 3 0.4955 0.4371 0.1478 0.0998 0.2342
Graph 4 0.4942 0.4942 0.4942 0.4942 0.4993
Graph 5 0.3960 0.5017 0.4530 0.3960 0.4880

Table 3. Evaluation of our methods’ area under the precision re-
call curve p-values on the DREAM4 dataset.

AUROC P Values on DREAM4

Method 1 Method 2 Method 3 Method 4 Method 5
Graph 1 0.4981 0.5094 0.5155 0.5195 0.5240
Graph 2 0.5662 0.5173 0.5162 0.4306 0.5409
Graph 3 0.5582 0.4660 0.3708 0.3641 0.4192
Graph 4 0.5560 0.5056 0.5029 0.5071 0.5383
Graph 5 0.4453 0.5438 0.4743 0.4453 0.4896

Table 4. Evaluation of our methods’ area under the receiver oper-
ator characteristic curve p-values on the DREAM4 dataset.

Total Scores

From these graphs we see that the AUROC and AUPR p-values
for all 5 of our methods lurk around 50 percent. For a com-
pletely random assignment of edge values, we would expect to
see areas of 50 percent, which indicates that our algorithm isn’t
really predicting edges better than random. The PAUROC and
PAUPR values for each of our methods are also similar to 50
percent for each method, so our randomly generated graphs have
very high probabilities of having larger areas under both the PR
and ROC curves. We suspect that we may have received these
poor results because there could be nonlinear dependencies be-

PAUROC PAUPR Score
Method 1 0.5225 0.4752 0.3024
Method 2 0.5077 0.4865 0.3035
Method 3 0.4724 0.3855 0.3697
Method 4 0.4497 0.3239 0.4182
Method 5 0.5002 0.4287 0.3343

Table 5. Evaluation of our methods’ AUROC and AUPR total
scores on the DREAM4 dataset.

tween genes in the ground truth regulatory network, whereas we
used the linear implementation of NOTEARS. Furthermore, the
ground truth regulatory networks were not actually DAGs. The
NOTEARS algorithm is capable of learning non-DAG graphs,
which it did repeatedly during our training, but this could have
also impacted the efficacy of our methods. However, it is possible
that the final non-DAG ground truth graphs could be combina-
tions of DAGs learned from each time series. This could provide
insight into why our methods that incorporated the time series as-
sumptions performed better than just training NOTEARS on the
full dataset and ignoring the time feature. Our methods 3 and 4
which encoded a Markov time assumption into the features of our
dataset performed a little better than our other implementations
of time series assumptions, which could reveal that there are con-
nections between features at past time points. We propose that
future work could focus on utilizing non-linear implementations
of NOTEARS, perhaps alternative graph aggregation techniques,
or different assumptions of how time influences the data.

Results and Discussion on Dynamically
Changing Graph
To assess our approach on a dynamically changing graph, we
tested our approach on a simulated dynamic Gaussian Bayesian
network. More specifically, we generated samples drawn from
an acylic Gaussian Bayesian network where over each time step,
each previously existing edge would have a random, independent
chance of being removed in the following timestep. Furthermore,
previously absent edges that would not break the DAG constraint
would also have a random chance to be added. We generated
this network under two conditions, one “slowly-changing” net-
work where the change probability was 10%, and one “quickly-
changing” network where the probability was 50%. We utilized
method 3 as described in the previous section where the width of
the temporal smoothing was varied as a hyperparameter and cal-
culated the accuracy (AUC) of our algorithm’s ability to deduce
the correct network each time step. The results are shown in Fig-
ure 1.

We see a concave relationship between the temporal smoothness
penalty and average AUC for each time point. As expected, for
extremely high regularization penalties, we force the same graph
to be deduced each time point which prevents us from capturing
dynamic behavior. For low penalties, we do not take advantage
of any temporal structure in the data. We also see that the in-
crease in performance by taking advantage of this temporal struc-
ture is much higher for the slowly changing graph than the quickly
changing one. This is expected since a graph from one time point
utility in aiding our estimate of the graph in future time points
is inversely proportional to how quickly that network is chang-
ing. Future work for this dynamic implementation of NOTEARS
could experiment with alternative temporal regularization tech-

Time-Varying DAGs with NOTEARS

Figure 1. Accuracy of Temporally Regularized NOTEARS imple-
mentation. We implemented a dynamic Gaussian Bayesian net-
work whose structure changed over time and assessed our algo-
rithm’s ability to deduce the correct network structure over each
time point. We utilized two networks: one “slowly-changing” net-
work where each edge had a 10% of changing each time step and
one faster changing network where each edge had a 50% chance
of changing. The x-axis shows how “temporally smooth” our
hyperparameterization forces the deduced graphs to be. The far
left points represent no temporal smoothness penalization which
is identical to using the original NO TEARS implementation on
each time point independently.

niques. We also think it would be useful to see how well our
method predicts graph structures from real datasets that were not
simulated.

References
Guo, F., Hanneke, S., fu, W., and Xing, E. Recovering temporally

rewiring networks: A model-based approach. volume 227, pp.
321–328, 01 2007. doi: 10.1145/1273496.1273537.

Hanneke, S. and Xing, E. P. Discrete temporal models of so-
cial networks. In Airoldi, E., Blei, D. M., Fienberg, S. E.,
Goldenberg, A., Xing, E. P., and Zheng, A. X. (eds.), Statis-
tical Network Analysis: Models, Issues, and New Directions,
pp. 115–125, Berlin, Heidelberg, 2007. Springer Berlin Hei-
delberg. ISBN 978-3-540-73133-7.

Kalofolias, V., Loukas, A., Thanou, D., and Frossard, P. Learning
time varying graphs. pp. 2826–2830, 03 2017. doi: 10.1109/
ICASSP.2017.7952672.

Kolar, M., Song, L., Ahmed, A., and Xing, E. Estimating time-
varying networks. The Annals of Applied Statistics, 4, 12 2008.
doi: 10.1214/09-AOAS308.

Koller, D. and Friedman, N. Probabilistic graphical models - prin-
ciples and techniques. 2009.

Lee, H.-C., Danieletto, M., Miotto, R., Cherng, S. T., and Dud-
ley, J. T. Scaling structural learning with NO-BEARS to in-
fer causal transcriptome networks. Pacific Symposium on Bio-

computing. Pacific Symposium on Biocomputing, 25:391–402,
2020.

Lin, C. and Bar-Joseph, Z. Continuous-state HMMs for mod-
eling time-series single-cell RNA-Seq data. Bioinformat-
ics, 35(22):4707–4715, 04 2019. ISSN 1367-4803. doi:
10.1093/bioinformatics/btz296. URL https://doi.org/
10.1093/bioinformatics/btz296.

Marbach, D., Prill, R. J., Schaffter, T., Mattiussi, C., Floreano,
D., and Stolovitzky, G. Revealing strengths and weaknesses of
methods for gene network inference. Proceedings of the Na-
tional Academy of Sciences, 107(14):6286–6291, 2010. ISSN
0027-8424. doi: 10.1073/pnas.0913357107. URL https:
//www.pnas.org/content/107/14/6286.

Pamfil, R., Sriwattanaworachai, N., Desai, S., Pilgerstor-
fer, P., Beaumont, P., Georgatzis, K., and Aragam, B.
Dynotears: Structure learning from time-series data. ArXiv,
abs/2002.00498, 2020.

Pirgazi, J. and Khanteymoori, A. A robust gene regulatory net-
work inference method base on kalman filter and linear regres-
sion. PLoS ONE, 13, 07 2018. doi: 10.1371/journal.pone.
0200094.

Schaffter, T., Marbach, D., and Floreano, D. GeneNetWeaver:
in silico benchmark generation and performance profiling
of network inference methods. Bioinformatics, 27(16):
2263–2270, 06 2011. ISSN 1367-4803. doi: 10.1093/
bioinformatics/btr373. URL https://doi.org/10.
1093/bioinformatics/btr373.

Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. P. DAGs with
NO TEARS: Continuous Optimization for Structure Learning.
2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E. P.
Learning Sparse Nonparametric DAGs. 2019.

Zhou, S., Lafferty, J., and Wasserman, L. Time varying undi-
rected graphs. Machine Learning, 80, 03 2008. doi: 10.1007/
s10994-010-5180-0.

https://doi.org/10.1093/bioinformatics/btz296
https://doi.org/10.1093/bioinformatics/btz296
https://www.pnas.org/content/107/14/6286
https://www.pnas.org/content/107/14/6286
https://doi.org/10.1093/bioinformatics/btr373
https://doi.org/10.1093/bioinformatics/btr373

